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Abstract

This paper considers tests for cointegration with allowance for structural breaks, using the ex-
trema of residual-based tests over subsamples of the data. One motivation for the approach is
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failing to find a predicted cointegrating relationship. Valid critical values for such multiple testing
situations may be useful. The methods also have the advantage of not imposing a form for the
alternative hypothesis, in particular slope vs. intercept shifts and single versus multiple breaks,
and being comparatively easy to compute. A range of alternative subsampling procedures, includ-
ing sample splits, incremental and rolling samples are tabulated and compared experimentally.
Shiller’s annual stock prices and dividends series provide an illustration.
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1 Introduction

It is not an uncommon dilemma in econometric practice to test for cointegrating relations that
economic theory predicts should exist, and find that the null hypothesis of noncointegration is
not rejected. Inevitably, structural change may be suspected to play a part in such outcomes.
Since the correct modelling of data containing conjectured structural breaks is potentially an
elaborate and tricky undertaking, there is a need for easily implemented tests of the null hypoth-
esis of non-cointegration, against alternatives allowing cointegrating relations subject to breaks
or intermittency. It must be assumed that the dates of breaks, as well as their number and their
type, are unknown.

One method adopted in the literature has been to assume a switch in intercept and/or slope,
and so run regressions containing dummy variables for each possible break point within a feasible
interval of the sample (say, [0.15T ] to [0.85T ], where T is sample size) and tabulate the extrema
of suitable test statistics under the null hypothesis. This is the approach undertaken by Zivot
and Andrews (1992) for tests of univariate integration (the I(1) hypothesis), and by Gregory
and Hansen (1996) for tests of cointegration. In these schemes the whole sample is used for
each statistic evaluation, although the switching parameters are nonetheless estimated from the
subsamples, in effect. It is necessary to anticipate the type of break that may exist – a switch
of mean, or of the slope coefficients, or to noncointegration. Discontinuities in the dummy
variables present complications in deriving asymptotic distributions for such extremum statistics,
as detailed by Zivot and Andrews (1992). Qu (2007) also considers this problem, from a slightly
different perspective, and investigates a nonparametric procedure based on the Breitung (2002)
test of I(1).

The approach explored in the present paper is to compute one of the usual test statistics
from subsamples of the data. The breaks hypothesis asserts that there are periods in which
fixed cointegrating relationships hold. The possibility of a consistent test requires that these
periods must grow in length with the overall sample, and hence, the detection of a relationship
should be possible by choosing an appropriate subsample for the test. In its most general form,
this approach suggests some sort of incremental or rolling sequence of subsamples. This idea
is investigated in the context of unit root testing by Banerjee, Lumsdaine and Stock (1992) for
example. A similar approach to our own is developed in Kim (2003) although, as we remark in
the sequel, Kim’s asymptotic analysis appears inadequate to establish his results.

The appeal of this approach is threefold. First computational simplicity, since it only involves
evaluating one of the standard cointegration statistics from the literature at each step. Second,
there is no need to estimate the model under the alternative, so that the type of break, and the
number of breaks, do not need to be specified. Third, following from this, there is the potential
to detect breaks anywhere in the sample. For the case of a single break, at least, we suggest
methods which place no limitation on the location of the break date. While statistics based on
dummy shift variables may have power advantages against specific alternatives, our hope is to
develop a test with general diagnostic applications. In other words, our tests can be computed
routinely, and a rejection will simply point to the existence of some relationship worthy of further
investigation by specific methods.

Another way to view our proposals is as a way of formalizing the practice of data snooping
by testing subsamples. Suppose a practitioner inspects his/her data, conjectures the existence of
a break at a particular date, and then recomputes the cointegration test for the subsample either
preceding or following this date. This procedure would of course contaminate the inferences
based on the test outcome, particularly if repeated with a succession of conjectured breakpoints.
However, if we tabulate the null distribution of the extremum of test statistic values over a
specified set of subsamples, these critical values will place valid bounds on test size. Since the
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extremum statistic exceeds (absolutely) any of an arbitrary sequence of cointegration tests based
on snooping subsample regressions, its tabulation provides a valid test based on the criterion
”one or more of the subsamples yields a rejection”.

One very simple procedure that involves no snooping is to split the sample into equal halves,
and take the extremum of the cointegration statistics for each half. This technique can of course
be implemented very easily, given access to the tabulation of the extremum of two independent
statistics. Suppose we can assume at most one break, under the alternative. Then, this must
occur in either the first half or the second half of the sample. Unless the series are actually
non-cointegrated under a regime persisting from more than half the sample, even this simple
procedure must yield a consistent test for cointegration.

A more ambitious scheme is to compute the statistic incrementally, and tabulate the extremum
over all subsamples defined by initial or terminal observations in given ranges. In the case of a
single break, note that the indicated range of terminal dates to consider is either [T/2] + 1, ..., T ,
with 1 for the initial date, or alternatively initial dates 1, ..., [T/2], with T for the terminal date.
Again, since a single break must occur in either the first half or the second half of the sample,
there should be no need to consider other ranges than these two. In other words, to detect a
single break there is no advantage in starting the recursion, either forwards or backwards, on a
subsample of fewer than half the observations. The situation is different for alternatives with
breaks at two or more dates. Then we may face a trade-off between the advantages of considering
relatively short subsamples, and the disadvantages of this technique when the overall sample is
not large, so that asymptotic approximations are correspondingly poor.

The paper is organized as follows. Section 2 sets out the framework of the analysis and
Section 3 introduces the alternative tests under consideration. Section 4 derives their asymptotic
distributions under the null hypothesis that the data are non-cointegrated I(1) processes, and
gives a proof of consistency. Tabulations of critical values computed by Monte Carlo for the cases
of one and two regressors are reported. Section 5 investigates the performance of the tests in
simulations of a range of bivariate alternatives. One feature of our experimental design is that
we randomize the location of the breaks, drawing these from the uniform [0,1] distribution as a
proportion of sample size. Therefore, our power comparisons can be viewed as integrating out
the break locations and reporting an average performance over possible break patterns. Since
there is no reason to think that the location of a break has a systematic relationship with the
span of the sample in applications, this scheme offers the most useful comparison of alternative
techniques. Section 6 applies the techniques to Shiller’s well-known 1871-2004 annual stock prices
and dividends series, and Section 7 concludes the paper.

2 Models with Structural Shifts

Let xt = (x1t,x
′
2t)
′ be a p-vector I(1) process, such that

xt = x0 +

t∑
s=1

us

where E |x0| < ∞, and {ut,−∞ < t < ∞} is a p-variate stationary process with E(ut) = 0,
Σ = E(utu

′
t) and Λ =

∑∞
j=1E(utu

′
t−j) <∞, such that

T−1E(xT − x0)(xT − x0)′ → Ω = Σ + Λ + Λ′.

A question routinely at issue in econometrics is whether Ω is singular, in which case the process
is said to be cointegrated in the sense of Engle and Granger (1987). By implication there exists

3



a vector β0 such that

zt = (x1t − x10)− β′0(x2t − x20)

= x1t − α0 − β′0x2t (2.1)

is an I(0) process with a mean of zero, where α0 = x10−β′0x20, a constant under the distribution
conditional on x0. The normalization on the element x1t is arbitrary but it’s convenient to assume
that rank(Ω22) = p− 1 in the partition

Ω =

[
ω11 ω12

ω′12 Ω22

]
. (2.2)

Strictly, our characterization of cointegration is that there exists a partition of the data having
these properties.1 Non-cointegration, in this sense, implies zt ∼ I(1) for all choices of β0 6= 0.
Note that the case with β0 = 0 has the property x1t ∼ I(0) and hence zt ∼ I(0), which is not
cointegration as usually understood, although it does imply Ω singular, having first row and
column zero. We exclude this case from further consideration, not least because tests on the
individual series should reveal it.

A case where cointegration fails to hold as defined, but may be said to exist more generally,
is where

zt = x1t − (α0 + α1ϕt)− (β0 + β1ϕt)
′x2t (2.3)

defines an I(0) zero mean sequence, where

ϕt =

{
1, t ∈ {[Tr] + 1, . . . , T}

0, otherwise

for 0 < r < 1. It is easy to elaborate the following story to allow multiple breaks, without altering
the essentials.

Suppose first that β1 6= 0. Then we may be able to say that

([Tr1])−1E(x[Tr] − x0)(x[Tr] − x0)′ → Ω1 (2.4a)

(T − [Tr1])−1E(xT − x[Tr])(xT − x[Tr])
′ → Ω2 (2.4b)

but Ω1 6= Ω2, and although both of Ω1 and Ω2 are singular,

T−1E(xT − x0)(xT − x0)′ → Ω = rΩ1 + (1− r)Ω2

is in general nonsingular. The covariance structure of the multivariate process changes at date
[Tr] with an accompanying intercept shift of magnitude

α1 = −β′1x20.

We may call this a regime shift. By implication, the standard cointegration tests are inconsistent
in this case, notwithstanding that a form of cointegration exists.

Alternatively we may have what Gregory and Hansen (1996) call a level shift. One way to
understand this is as an autonomous shift in the cointegrating intercept at date [Tr]. However,

1A singular Ω22 implies the independent existence of cointegration among the elements of x2t. This is a
complication we avoid by assumption, but in the context of the present analysis we might meet it by conducting
the analysis on x2t, and on subsets of the data generally. Any cointegrated collection of time series contains one
or more ‘irreducible’ subsets of cointegrating rank 1; see Davidson (1998) for details.
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it may be useful to think of it as arising when a shock hitting the system at date [Tr] breaks the
covariance structure, temporarily but with permanent effect. Note that (2.1) implies the relation

u1t = β′0u2t + ∆zt. (2.5)

Under cointegration the random processes {u1t,u2t} driving the system are linked implicitly into
a long-run singular relationship by the presence of the ‘over-differenced’ residual component, such
that u1t−β′0u2t is an over-differenced process by construction. However now consider a shock to
the system at date t (assume an autonomous addition to u1t, without loss of generality) which
breaks the cointegrating relation. Defining a process

δt =

{
α1, t = [Tr] + 1,

0, otherwise,

note that the difference equation

u1t = β′0u2t + ∆zt + δt

has solution

zt =

{
x1t − α0 − β′0x2t t ≤ [Tr],

x1t − (α0 + α1)− β′0x2t t > [Tr].

A succession of such shocks would destroy the cointegating relationship since they would integrate
to an additional stochastic trend, but an isolated shock of this type effects a level shift. Unlike
the regime shift case, the process defined in (2.1) has bounded variance in the limit, but under
the distribution conditional on {δt} it is nonstationary with time-varying mean. Since the break
is of small order relative to xt, note that Ω1 = Ω2 (singular) in (2.4). In this sense, the process
cointegrates normally and conventional cointegration tests are nominally consistent, but may
nonetheless have low power in finite samples where the break may cause zt to mimic an I(1)
component.

One further case that we may wish consider is where (say) Ω1 is singular but Ω2 is nonsingular,
so that cointegration exists in only a portion of the sample. The main point to emphasize here is
that this is distinct from the case β1 = −β0 in which, as noted previously, there is no cointegration
in the second period but x1t becomes a stationary process, and Ω2 is singular through having
first row and column zero. By contrast, the former case is one in which there exists no stationary
linear combination when t > [Tr].

3 Tests for Noncointegration

Gregory and Hansen (1996) attack the problem of detecting cointegration in the presence of
single breaks by fitting the breaking-cointegration models to the data, for all choices of r1 in a
suitable interval, and tabulating the extremum of their resulting sequence of cointegration tests
statistics under the null hypothesis of noncointegration (and hence, no breaks). By contrast,
we derive statistics that can be applied to the usual putative cointegrating regression (2.1), and
hence avoid the need to specify the form of the breaks model. All our tests should all be able
to detect cointegration with a single break consistently, so long as the series are cointegrated on
both sides of the break. Power to detect intermittent cointegration, where the relation breaks
down entirely in one regime, may also be available subject to the location of the break. The tests
can also have power against some multiple-break alternatives. At a minimum, what is required
for consistency of at least one test of the type proposed here is that there should exist a segment
of the sample of length O(T ) satisfying a cointegrating relation.
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For expositional simplicity, let tT stand initially for the Dickey-Fuller statistic without aug-
mentation for autocorrelation corrections, as would be appropriate for the case where Λ = 0.
This was one of the procedures first suggested by Engle and Granger (1987) and its asymptotic
properties are well-known; see e.g. Engle and Yoo (1987), Phillips and Ouliaris (1990) or for a
general exposition, Davidson (2000) Chapter 15.3. Consider the statistics defined for subsamples
t = [Tλ1] + 1, ..., [Tλ2], where λ1 ∈ [0, 1) and λ2 ∈ (λ1, 1], as

tT (λ1, λ2) =

∑[Tλ2]
t=[Tλ1]+1 ẑt−1(λ1, λ2)∆ẑt(λ1, λ2)

s(λ1, λ2)
(∑[Tλ2]

t=[Tλ1]+1 ẑt−1(λ1, λ2)2
)1/2

(3.1)

where
ẑt(λ1, λ2) = x∗1t(λ1, λ2)− β̂(λ1, λ2)′x ∗2t(λ1, λ2) (3.2)

for t = [Tλ1] + 1, . . . , [Tλ2], and

s2(λ1, λ2) =
1

[Tλ2]− [Tλ1]

[Tλ2]∑
t=[Tλ1]+1

êt(λ1, λ2)2 (3.3)

where êt(λ1, λ2) is the residual from the regression of ∆ẑt(λ1, λ2) on ẑt−1(λ1, λ2). The data
subsamples, expressed for convenience in (subsample-) mean deviation form, are

x ∗t (λ1, λ2) = xt −
1

[Tλ2]− [Tλ1]

[Tλ2]∑
s=[Tλ1]+1

xs, t = [Tλ1] + 1, . . . , [Tλ2].

Also,

β̂(λ1, λ2) =

 [Tλ2]∑
t=[Tλ1]+1

x ∗2t(λ1, λ2)x ∗2t(λ1, λ2)′

−1
[Tλ2]∑

t=[Tλ1]+1

x ∗2t(λ1, λ2)x∗1t(λ1, λ2). (3.4)

To allow for the presence of short-run autocorrelation in the differenced variables, the DF
statistic might be augmented in the usual way by projecting ẑt−1 onto lags of ∆ẑt. However, this
ADF statistic presents some difficulties for asymptotic analysis (see Phillips and Ouliaris 1990)
and a more amenable approach is to adopt the Phillips-Perron (1988) non-parametric correction

Cl(λ1, λ2) =
1

[Tλ2]− [Tλ1]

l(λ1,λ2)∑
j=1

wjl

[Tλ2]∑
t=[Tλ1]+j

êt(λ1, λ2)êt−j(λ1, λ2) (3.5)

where, adapting the Newey and West (1987) formulation for example, we could set wlj = 1 −
j/(1 + l(λ1, λ2)) and l(λ1, λ2) = O(T 1/3). The subsample Phillips-Perron (PP) statistic is

ẐT (λ1, λ2) =

∑[Tλ2]
t=[Tλ1]+1 (ẑt−1(λ1, λ2)∆ẑt(λ1, λ2)− Cl(λ1, λ2))

S2
l (λ1, λ2)

(∑[Tλ2]
t=[Tλ1]+1 ẑt−1(λ1, λ2)2

)1/2

=
s2(λ1, λ2)

S2
l (λ1, λ2)

tT (λ1, λ2)− ([Tλ1]− [Tλ2])Cl(λ1, λ2)

S2
l (λ1, λ2)

(∑[Tλ2]
t=[Tλ1]+1 ẑt−1(λ1, λ2)2

)1/2
(3.6)

where S2
l (λ1, λ2)2 = s2(λ1, λ2) + 2Cl(λ1, λ2). This statistic is asymptotically equivalent to

tT (λ1, λ2) in case ut is serially uncorrelated.
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We adopt qT (λ1, λ2) in the sequel as a generic notation for a cointegration statistic, for which
specific cases such as tT (λ1, λ2) and ẐT (λ1, λ2) can be substituted in formulae. We consider the
class of tests based on extreme values of subsample statistics over alternative of sets of λ1and λ2

values. Here are some cases, in which the generic symbol Λ denotes a collection whose elements
are pairs, {λ1, λ2}, and these may in general depend on a fixed value to be chosen, λ0 > 0.

ΛS = {{0, 1
2}, {

1
2 , 1}} (3.7a)

Λ0f = {{0, s} : s ∈ [λ0, 1]} (3.7b)

Λ0b = {{s, 1} : s ∈ [0, 1− λ0]} (3.7c)

Λ0R = {{s, s+ λ0} : s ∈ [0, 1− λ0]} (3.7d)

Thus, ΛS represents a simple split sample, with just two elements. Λ0f and Λ0b define forwards-
and backwards-running incremental samples of minimum length [Tλ0] and maximum length T .
These choices will hope to give power against some breaks occurring either after date [Tλ0]
or before date [T (1 − λ0)], and note that a single break must occur in the union of these two
collections. The case Λ0R defines rolling samples of fixed length [Tλ0], and is aimed detecting
those cases where cointegration exists over a subsample of length at least [Tλ0] periods, but with
unknown start and finish dates. In addition, there are the cases

Λ∗S = ΛS ∪ {0, 1} (3.8a)

Λ∗0R = Λ0R ∪ {0, 1} (3.8b)

where the sets of subsamples are augmented by the full sample. The cases Λ0f and Λ0b already
contain the elements {0, 1}, so we don’t need to make their inclusion explicit in these cases.

The tests we consider are therefore of three types.2 The split-sample tests are

QS = min
{λ1,λ2}∈ΛS

qT (λ1, λ2) (3.9)

Q∗S = min
{λ1,λ2}∈Λ∗

S

qT (λ1, λ2). (3.10)

The incremental tests take the form

QI(λ0) = inf
λ∈Λ0f∪Λ0b

qT (λ1, λ2) . (3.11)

and the rolling sample tests are of the forms

QR(λ0) = inf
λ∈Λ0R

qT (λ1, λ2) (3.12)

Q∗R(λ0) = inf
λ∈Λ∗

0R

qT (λ1, λ2) (3.13)

4 Asymptotic Analysis

Define XT (r) = T−1/2x[Tr], and JT (r) = T−1
∑[Tr]

t=2 xt−1u
′
t. Let D[0, 1]m denote the space of

m-dimensional cadlag functions on the unit interval,3 that is to say, functions having the property

2The authors’ Ox code to compute these tests based on PP and ADF statistics is available at
http://www.timeseriesmodelling.com

3A property that Dm[0, 1] needs to possess to use the cited results is that discontinuities are coordinated across
the m processes, such that the jump dates match. Because in our applications jump dates correspond to dates of
observation, this condition is always met in practice.
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of right-continuity and a left limit at each point of (0, 1]. Also let B be a p-vector of Brownian
motions on [0, 1] with B(0) = 0 a.s., and covariance matrix Ω, and let J denote a p× p matrix-
valued process defined by J(r) =

∫ r
0 BdB

′+ rΛ for r ∈ [0, 1]. Our fundamental assumptions will
be the following.

Assumption 1

(XT ,VecJT )
d→ (BVecJ) (4.1)

where ‘
d→ ’ denotes joint weak convergence with respect to the Skorokhod metric on D[0, 1]p(1+p).

Assumption 2

T−1
T∑
t=1

utu
′
t
pr→ Σ, T−1

l(0,1)∑
j=1

wlj

T∑
t=1+j

utu
′
t−j

pr→ Λ,

where ‘
pr→ ’ denotes convergence in probability, and l() and wlj are defined following (3.5).

Setting high-level assumptions avoids the question of specifying sufficient conditions on the un-
derlying discrete process {ut}, although for the benefit of practitioners it can suffice to say that
such conditions match those needed for conventional cointegration analysis. The lower-level as-
sumptions cited by Gregory and Hansen (1996), for example, are certainly sufficient. A large
literature dealing with these questions exists, and we prefer to focus attention on the specific
problem of the limiting behaviour of our extremum statistics. Note that although the sequence
elements XT and VecJT are cadlag, the limit processes B and VecJ are elements respectively of
C[0, 1]p and C[0, 1]p

2
with probability 1, where C[0, 1]m ⊂ D[0, 1]m is the space of m-dimensional

continuous functions on the unit interval (see e.g. Kurtz 2001, Corollary 5.4). In C[0, 1] the Sko-
rokhod topology is equivalent to the uniform topology and, as pointed out by Billingsley (1968,
page 112), convergence to a continuous limit process in the Skorokhod topology is equivalent to
uniform convergence.

Results on stochastic integral convergence (i.e., the case JT ) are commonly given in the
literature in point-wise form, by considering the random matrix JT (r) for some r, typically
r = 1. See for example Chan and Wei (1988), and De Jong and Davidson (2000), for results of
this type. However, Hansen (1992) deploys results from Kurtz and Protter (1991) (see also Kurtz
and Protter 1995 for a detailed exposition of the theory) which establish weak convergence of
the cadlag process JT in the sense asserted in (4.1). The conditions cited for Hansen’s (1992)
Theorem 4.1 are sufficient for (4.1) to hold. An alternative approach allowing different lower-level
assumptions might be to take a pointwise convergence result in combination with an argument
showing tightness of the sequence {VecJT }, by verifying a condition such as Billingsley (1968)
Theorem 15.6, for example. We do not pursue these extensions here, however.

Given Assumptions 1 and 2, the asymptotics of our procedures under the null hypothesis can
be derived as extensions of the results developed by Zivot and Andrews (1992) and Gregory and
Hansen (1996). In the presence of autocorrelation (Λ 6= 0) we follow the latter authors in working
with the Phillips-Perron cointegration statistic (3.6). First, we establish the limiting distributions
of the statistics ẐT (λ1, λ2) under the null hypothesis. The key point to be established is that for
given values λ1 and λ2, these are continuous functionals of the limit processes specified in (4.1).

It is convenient to adapt the approach and notation of Davidson (2000), Chapter 15, modified
to the subsample setup. Let W denote a standard p-vector Brownian motion having variance
matrix Ip. Then, define

ξ(λ1, λ2) = (1, − ζ(λ1, λ2)′)′ (p× 1) (4.2)
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where

ζ(λ1, λ2) =

(∫ λ2

λ1

W ∗
2W

∗′
2 dr

)−1 ∫ λ2

λ1

W ∗
2W
∗
1 dr (4.3)

and we define (omitting the dependence on λ1, λ2 for brevity)

W ∗(r) = W (r)−W (λ1)−
∫ λ2

λ1

W ds, λ1 ≤ r ≤ λ2. (4.4)

Similarly, let∫ λ2

λ1

W ∗dW ′ =

∫ λ2

λ1

(W (r)−W (λ1))dW ′ − (W (λ2)−W (λ1))

∫ λ2

λ1

W ds. (4.5)

If W = L′−1B where Ω = L′L, further note that∫ λ2

λ1

W dW ′ = L′−1[J(λ2)− J(λ1)− (λ2 − λ1)Λ]L−1. (4.6)

Therefore, adapting the standard development, such as that given in Davidson (2000) leading
to equation (15.3.26), for example, we may assert that under Assumptions 1 and 2,

ẐT (λ1, λ2)
d→ τ(λ1, λ2)

=
ξ(λ1, λ2)′

∫ λ2
λ1
W ∗dWξ(λ1, λ2)√

ξ(λ1, λ2)′ξ(λ1, λ2)
√
ξ(λ1, λ2)′

∫ λ2
λ1
W ∗W ∗′drξ(λ1, λ2)

(4.7)

where the equality defines the limit random variable τ(λ1, λ2) . Note that the marginal
distribution of τ(λ1, λ2) is independent of nuisance parameters, and in particular, does not depend
on λ1 and λ2 on account of the self-similarity of Brownian motion. The range of integration
determines the variances of the stochastic integrals appearing in the expression as a function of
(λ1, λ2), but these scale factors cancel in the ratio.

Therefore, the problem is to establish, for specified sets Λ, the weak convergence

inf
{λ1,λ2}∈Λ

ẐT (λ1, λ2)
d→ inf
{λ1,λ2}∈Λ

τ(λ1, λ2). (4.8)

Theorem 4.1 Under Assumptions 1 and 2, the weak convergence specified in (4.8) holds for the
cases where Λ is one of ΛS, Λ∗S, Λ0I = Λ0f ∪ Λ0b, Λ0R and Λ∗0R, for any λ0 > 0.

The proof is given in the Appendix. Note that the limiting distribution in (4.7) is shared by the
subsample PP and ADF statistics, as shown by Phillips and Ouliaris (1990), and we take this
result as given under our assumptions. In practice, Theorem 4.1, which simply establishes the
extension from the pointwise to the uniform case, applies equally to either test. The result could
be extended to other statistics, such as the trace test, with minor modifications. We remark
that the analysis of Kim (2003) claims results similar to our own, citing theorems given in Chan
and Wei (1988) as sufficient authority. However, our proof makes clear that these results do not
suffice here.4

4Theorem 2.3 of Chan and Wei (1988) gives a form of continuous mapping theorem for a process Zn(t) =∫ t

0
f(Yn(u))du where Yn is a vector converging to Brownian motion. However, note that the numerator of (4.7) is

not of this form, even when generalized to a variable initial time. Theorem 2.4 of the same source gives a result
for stochastic integral convergence, but this is a pointwise result specifying a fixed terminal date t = 1. Thus, the
stochastic integral convergence proved relates to a random variable

∫ 1

0
HdW where W is a Brownian motion – not

an a.s. continuous stochastic process on the unit interval, for which the result is required here.
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We have tabulated large sample critical values for these distributions by simulation. The
results are reported in Table 1 for the cases of one and two regressors, with and without linear
trend, and sample size T = 1000. The extremum statistics based on tT (λ1, λ2) in (3.1) were
used for speed of calculation, since the limiting distributions are as shown in (4.8) when the
generated series are Gaussian random walks. The tables are constructed in each case from
40, 000 replications. To construct these tables, and also to compute the simulations of the next
section, the extremum statistics were in practice calculated by evaluating the statistics for every
fifth case of the subsamples in the specified ranges, and returning the minimum of these values.
This is done to reduce the computing time required, but given the continuity of the statistics
on C[0, 1] as functions of λ1 and λ2, as established in Theorem 4.1, the approximations involved
should be small in a large sample.

Since the observations are partitioned according to fixed proportions of the sample size, es-
tablishing the consistency of these tests is a fairly straightforward extension of the standard
arguments of Phillips and Ouliaris (1990) and other authors, provided that the passage to the
limit is specified appropriately. Consider the sets Λ, each consisting of a collection of subintervals
of [0, 1]. Also consider a sequence {AT , t ≥ 1} where AT is any such interval, and write TAT for
the corresponding set of integers from {1, . . . , T}.

Assumption 3 Given a sequence of samples {x1, . . . ,xT ; T ≥ 1}, ∃ T0 < ∞ such that for all
T ≥ T0 the observations {xt : t ∈ TAT } form a cointegrated sequence, where {AT , t ≥ 1} is a
sequence of intervals of [0, 1] having uniformly positive width.

Let Λ denote one of the sets ΛS , Λ∗S , Λ0I = Λ0f ∪Λ0b, Λ0R and Λ∗0R, as specified in Theorem 4.1,
and QΛ the corresponding infimum statistic, as defined by one of (3.9), (3.10), (3.11), (3.12) and
(3.13).

Theorem 4.2 If Assumptions 1, 2 and 3 hold, then the subsample test QΛ is consistent if and
only if ∃ {λ1, λ2} ∈ Λ such that [λ1, λ2] ⊆ AT1 and T0 ≤ T1 <∞.

This consistency result calls only for one of the tested subsets to be contained in a cointegrated
subset, and in particular, it shows consistency for the cases of ‘normal’ cointegration (Ω1 =
Ω2), broken cointegration (Ω1 6= Ω2, both singular) and partial cointegration (Ω1 6= Ω2, one
nonsingular), subject to Assumption 3 holding. In the case of a single break, such that AT =
[0, rT ] and/or AT = [rT , 1] for 0 ≤ rT ≤ 1, where cointegration holds in both parts of the sample,
note that all the tests are consistent for any sequence {rT }.

If there is non-cointegration in one of the two parts, say [0, rT ] the fact that an observation xt
cannot change its ‘status’ as the sample increases makes it necessary to specify how this increase
takes place. The usual construction, by adding observations to the end of the sample, is not
very useful because it implies rT → 0, so either no tests are consistent in the case AT = [0, rT ],
or all are consistent in the case AT = [rT , 1]. It is better to consider an ensemble of increasing
samples with rT = r, all T , and in this case we can say that QS and Q∗S are consistent in the
case r ≥ 1

2 , whereas QI(λ0) is consistent for r ≥ λ0 when [0, r] is cointegrating, and r ≤ (1− λ0)
when [r, 1] is cointegrating. The case of two or more breaks with cointegration holding in all
subsamples can always be subsumed in these latter cases, because there always exists a single
division into a cointegrating subsample and its noncointegrating complement. However, QR(λ0)
and Q∗R(λ0) are consistent, as the other tests are not, for the case where only the subsample
[r1, r2] is cointegrating., for 0 < r1 < r2 < 1.
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Regressors Type λ0 50% 10% 5% 2.5% 1%

1 DF − −2.059 −3.053 −3.358 −3.614 −3.903
QS − −2.493 −3.356 −3.610 −3.851 −4.120
Q∗S − −2.617 −3.463 −3.718 −3.938 −4.228

QI(λ0) 0.5 −3.224 −4.067 −4.327 −4.554 −4.846
0.35 −3.388 −4.194 −4.452 −4.667 −4.935
0.2 −3.562 −4.325 −4.568 −4.767 −5.032
0.1 −3.702 −4.433 −4.648 −4.863 −5.143

QR(λ0) 0.5 −3.344 −4.143 −4.392 −4.614 −4.864
Q∗R(λ0) 0.5 −3.363 −4.152 −4.402 −4.623 −4.873

1 + Trend DF −2.552 −3.503 −3.793 −4.051 −4.358
QS − −2.959 −3.791 −4.061 −4.297 −4.578
Q∗S − −3.082 −3.909 −4.165 −4.399 −4.666

QI(λ0) 0.5 −3.673 −4.480 −4.745 −4.956 −5.221
0.35 −3.840 −4.602 −4.860 −5.071 −5.329
0.2 −3.999 −4.735 −4.969 −5.177 −5.435

QR(λ0) 0.5 −3.781 −4.563 −4.803 −5.017 −5.294
Q∗R(λ0) 0.5 −3.794 −4.563 −4.803 −5.042 −5.294

2 DF − −2.069 −3.054 −3.361 −3.608 −3.915
QS − −2.478 −3.355 −3.618 −3.867 −4.175
Q∗S − −2.614 −3.466 −3.726 −3.963 −4.258

QI(λ0) 0.5 −3.220 −4.079 −4.341 −4.571 −4.854
0.35 −3.387 −4.200 −4.460 −4.679 −4.950
0.2 −3.559 −4.323 −4.565 −4.780 −5.050

QR(λ0) 0.5 −3.350 −4.154 −4.405 −4.636 −4.888
Q∗R(λ0) 0.5 −3.360 −4.164 −4.405 −4.636 −4.888

2+Trend DF − −2.549 −3.502 −3.801 −4.057 −4.342
QS − −2.954 −3.795 −4.053 −4.301 −4.560
Q∗S − −3.090 −3.912 −4.165 −4.397 −4.660

QI(λ0) 0.5 −3.680 −4.502 −4.755 −4.956 −5.240
0.35 −3.845 −4.623 −4.858 −5.073 −5.339
0.2 −4.007 −4.746 −4.973 −5.179 −5.445

QR(λ0) 0.5 −3.780 −4.569 −4.797 −5.024 −5.281
Q∗R(λ0) 0.5 −3.799 −4.578 −4.811 −5.025 −5.288

Table 1: Critical Values for Dickey-Fuller/Phillips-Perron Extremum Tests
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2 Gaussian r.w.s: PP Q∗S QI(0.5) QI(0.35) QI(0.2) Q∗R
no trend 0.060 0.069 0.048 0.052 0.061 0.043

broken trend 0.025 0.051 0.037 0.040 0.051 0.036

Table 2: Rejection Frequencies under H0: T = 200

5 Monte Carlo Experiments

With a variety of tests and possible break alternatives to compare, we are restricted in the number
of cases that can feasibly be studied by simulation. We decided to limit these to bivariate models,
and to consider the single sample size T = 200. The justification for the latter decision is that
we are interested primarily in the relative performance of tests, both to each other and to the
conventional (full sample) cointegration test. These relative performances are not likely to depend
unexpectedly on sample size, even if the absolute powers do so. Our software is available to readers
interested in more detailed comparisons. One feature of all our experiments is that the break
points are drawn at random from the Uniform[0, 1] distribution in each replication. The rejection
frequencies may accordingly be viewed as marginal probabilities with respect to this distribution.
This choice reflects our belief that no particular break position or duration is of greater practical
importance than another, so that an average outcome is of more interest than any specific case.

The first set of experiments we report, in Table 2, estimate rejection probabilities in cases
of the null hypothesis using Table 1, but with a sample of size 200. Although no short-run
autocorrelation is present, the test statistics, in all the experiments reported in this section, are
based on the PP statistic computed using the Parzen kernel and the plug-in bandwidth formula
proposed by Newey and West (1994), although without the pre-whitening step suggested by
those authors. The first row of the table shows the case of two trend-free Gaussian random
walks, corresponding simply to the tabulated model in a smaller sample. The second row relates
to a nonlinear case of the null hypothesis in which the two series experience a common break
in trend, while independent of each other conditional on the break point. The purpose of these
latter experiments is to check whether a breaks under non-cointegration might induce spurious
rejections. The series were generated in this case by the model

∆x1t = γ1ϕ[Tr] + u1t

∆x2t = γ2ϕ[Tr] + u2t

where u1t and u2t are independent standard normals and

ϕ[Tr] =

{
1 r1 ≤ r ≤ 1

0 otherwise.

where r1 ∼ U [0, 1]. The values γ1 = γ2 = 0.4 were chosen to give a common drift that was
neither negligible nor too exaggerated. In both these cases, the statistics were calculated using
the residuals from intercept and trend, and the critical values taken from the rows of Table 1
labelled “1 + Trend”.

The next set of experiments relate to cases of the alternative. The cointegrated series were
generated by a vector error correction model with the structure

∆x1t = γ1zt−1 + u1t

∆x2t = γ2zt−1 + u2t

where u1t and u2t are independent standard normals as before, and in any period t

zt = x1t − α− βx2t. (5.1)
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In this setup,
zt = (1 + γ1 − βγ2)zt−1 + u1t − βu2t. (5.2)

and the model is therefore cointegrating if β 6= 0 and −2 < γ1 − γ2β < 0.
We consider two experimental models. Model A (recursive dynamics) has γ1 < 0 and γ2 = 0,

while Model B (endogenous dynamics) has γ1 < 0 and γ2 = −γ1. We allow structural changes
by replacing α and β by

αT (r) = α0 + α1ϕ[Tr]

βT (r) = β0 + β1ϕ[Tr]

where

ϕ[Tr] =

{
1 r1 ≤ r ≤ r2

0 otherwise.

Thus, the model allows either one break (0 < r1 < 1, r2 = 1) or two breaks. (0 < r1 < r2 < 1),
although in the latter case there are still at most two regimes. In all the experiments, α0 = 0
and β0 = 1. We also consider the case of partial non-cointegration. To simulate the loadings
parameters γ1 and γ2 switching to 0 at the same date [Tr] it is sufficient to define the error-
correction term as zt = (1−ϕ[Tr])(x2t −α− βx1t), and this is the how the data are generated in
practice.

An important and insufficiently noted issue with tests of cointegration is that these are always
procedures involving a pre-test. They are of course incorrectly sized unless the series are actually
I(1), and a preliminary test of this hypothesis is routine in practice. There is a particular
hazard of over-rejection if the normalized variable in the regression used to form a residual-based
statistic is in fact stationary. In our experimental model, this case would be illustrated by setting
β = 0 in (5.1), with the cointegration test conducted by regressing x1t onto x2t. More generally,
a significant proportion of series generated by models with breaks of slope appear ‘stationary’
in short realizations, spite of the presence of the unit root, reflecting the nonlinearity of the
process. The conventional PP or ADF test may well reject despite the fact that no cointegrating
relationship exists in the sample. Our experiments are constructed to mimic good practice in
this regard, by conducting a conventional preliminary test of I(1) on both the candidate series.
The variable having the larger I(1) test statistic is always designated the regressand for the
cointegration test. The reported p-values are not in this case large sample approximations, but
have been computed from empirical distributions tabulated from 10,000 replications of the null
hypothesis γ1 = γ2 = 0, using the same setup (including the pre-test) and the same sample size
T = 200. Our reported rejection frequencies are therefore true power estimates, under the most
stringent choice of normalization.

As explained above, the break points are again drawn from the Uniform[0, 1] distribution in
each replication, so that the rejection probabilities are marginalized with respect to the break
location. In the case of two breaks, two independent drawings are taken and the smaller and
larger of these are assigned to r1 and r2 respectively. Each of the break models has been simulated
for four values of γ1, representing different degrees of persistence of the cointegrating relation
according to (5.2). The five break cases simulated are: 1) no breaks, standard cointegration
model; 2) a single break in intercept, with aT (r) = 10 for r > r1, 0 otherwise. 3) a double break
in intercept, with aT (r) = 10 for r1 < r < r1 and 0 otherwise. 4) a single break in slope, with
βT (r) = 2 for r > r1, 1 otherwise; 5) a break in cointegration at date [Tr1].

Tables 3 and 4 compare six different tests for these cases: the standard PP test; the Q∗S split
sample test defined by (3.10); the incremental test QI(λ0) defined by (3.11) for the case λ0 = 0.5,
0.35 and 0.2; and the rolling sample test Q∗R defined by(3.13), again for the case λ0 = 0.5. All the
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γ PP Q∗S QI(0.5) QI(0.35) QI(0.2) Q∗R I(1)

Case 1 0.05 0.090 0.065 0.060 0.059 0.059 0.052 0.008
No Break 0.1 0.448 0.264 0.208 0.173 0.140 0.099 0.016

0.2 0.994 0.956 0.889 0.847 0.777 0.476 0.031
0.5 1 1 1 1 1 1 0.046

Case 2 0.05 0.047 0.048 0.047 0.048 0.050 0.044 0.002
1 Intercept Break 0.1 0.102 0.115 0.141 0.125 0.114 0.093 0.003

α1 = 10 0.2 0.246 0.433 0.621 0.599 0.527 0.371 0.006
r1 ∼ U [0, 1] 0.5 0.356 1 1 1 1 0.999 0.009

Case 3 0.05 0.045 0.051 0.051 0.051 0.054 0.041 0.002
2 Intercept Breaks 0.1 0.106 0.092 0.098 0.087 0.083 0.076 0.003

α1 = 10 0.2 0.216 0.298 0.341 0.337 0.305 0.284 0.007
r1, r2 ∼ U [0, 1] 0.5 0.308 0.655 0.675 0.835 0.895 0.811 0.008

Case 4 0.05 0.045 0.041 0.040 0.041 0.040 0.038 0.002
1 Slope Break 0.1 0.206 0.130 0.120 0.103 0.084 0.065 0.003

β1 = 1 0.2 0.611 0.624 0.652 0.591 0.516 0.340 0.007
r1 ∼ U [0, 1] 0.5 0.767 1 1 1 1 0.999 0.010

Case 5 0.05 0.029 0.048 0.045 0.046 0.050 0.045 0.002
Cointegration 0.1 0.102 0.087 0.092 0.082 0.077 0.071 0.007

Break 0.2 0.236 0.302 0.324 0.297 0.266 0.211 0.009
r1 ∼ U [0, 1] 0.5 0.301 0.638 0.625 0.703 0.735 0.618 0.015

Table 3: Powers for Model A

latter tests are based on the PP statistic computed with the Parzen kernel and plug-in bandwidth.
The columns headed “γ” show the magnitudes of the error-correction coefficients, corresponding
to −γ1 in the case of Model A, and to γ2 = −γ1 in the case of Model B. The last column in each
table, headed I(1), shows the proportion of replications in which the PP tests of I(1) for both
variables reject at the nominal 5% level. Where this number is significant, as it is in a few cases,
the power estimates need to be interpreted with appropriate caution.

A noteworthy feature of these experiments is the fact that the ordinary PP test often has good
power to reject in the presence of cointegration, even when subject to breaks. This is particularly
true in Case 4, the slope break case. In interpreting these results it is necessary to check the last
column to see whether this power is spurious in the sense of the previous paragraph, although it
is the fact that it rejects at a comparable rate to the extremum tests that is of interest. However,
in the other cases the extremum tests often display a substantial power advantage. Comparing
the alternatives, Q∗R generally performs the poorest but there does not appear to be an overall
winner. The best strategy must clearly depend on how many breaks there are, but QI(0.35) looks
like a good bet.

Table 5, finally, shows the corresponding performance of the modified PP tests proposed by
Gregory and Hansen (1996). These tests, it will be recalled, augment the regression model with
either an intercept shift dummy (cases C and C /T, where in the latter case a trend term is also
included) or with both intercept and slope dummies (case C /S ), with the statistic optimized with
respect the position of the shift λ ∈ [0.15, 0.85]. These tests have been tabulated by simulating
the non-cointegration null hypothesis, in the same manner as for the subsample tests and, thence,
powers have estimated for the same set of ten models and five values of γ. Note that our strategy
of randomizing the break points in the simulations, as well as our choice of generation processes,
give an alternative perspective on the power of these tests to the Monte Carlo results of Gregory
and Hansen. The various tests perform in a generally comparable manner for the cases of single
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γ PP Q∗S QI(0.5) QI(0.35) QI(0.2) Q∗R I(1)

Case 1 0.05 0.332 0.196 0.187 0.145 0.121 0.093 0.058
No Break 0.1 0.952 0.854 0.750 0.692 0.617 0.351 0.150

0.2 1 1 0.999 0.999 0.998 0.932 0.273
0.5 1 1 1 1 1 1 0.371

Case 2 0.05 0.053 0.068 0.083 0.080 0.079 0.070 0.014
1 Intercept Break 0.1 0.109 0.198 0.324 0.295 0.251 0.173 0.033

α1 = 10 0.2 0.184 0.673 0.852 0.853 0.820 0.668 0.024
r1 ∼ U [0, 1] 0.5 0.366 1 1 1 1 1 0.038

Case 3 0.05 0.058 0.069 0.067 0.066 0.065 0.064 0.012
2 Intercept Breaks 0.1 0.148 0.222 0.251 0.247 0.227 0.201 0.029

α1 = 10 0.2 0.197 0.524 0.554 0.649 0.643 0.630 0.060
r1, r2 ∼ U [0, 1] 0.5 0.307 0.650 0.682 0.861 0.942 0.808 0.135

Case 4 0.05 0.287 0.180 0.165 0.145 0.122 0.088 0.052
1 Slope Break 0.1 0.762 0.676 0.635 0.589 0.525 0.324 0.119

β1 = 1 0.2 0.946 0.978 0.973 0.969 0.953 0.825 0.185
r1 ∼ U [0, 1] 0.5 0.996 1 1 1 1 1 0.371

Case 5 0.05 0.073 0.078 0.072 0.068 0.070 0.065 0.014
Cointegration 0.1 0.189 0.262 0.291 0.271 0.235 0.183 0.021

Break 0.2 0.259 0.568 0.566 0.613 0.609 0.543 0.034
r1 ∼ U [0, 1] 0.5 0.311 0.662 0.652 0.750 0.840 0.648 0.061

Table 4: Powers for Model B

breaks in slope or intercept, but the Gregory-Hansen tests are, as might be expected, less effective
in detecting a double break and a break in the cointegration. In these cases, at least one of our
test strategies is able to provide more power.

6 An Empirical Example

Campbell and Shiller (1987) show that the efficient markets hypothesis (EMH) implies stock
prices and dividends should be cointegrated. It is nonetheless not uncommon to observe episodes
of rapid price increases unconnected with dividend growth, followed by subsequent crashes. The
‘dot-com’ boom of the late 1990s is a prominent recent example. It is well known that non-
fundamental stock price increases and crashes can be integrated into present value models by
removing the transversality condition guaranteeing a unique solution, and such outcomes can
explain the presence of stochastic rational bubbles on the stock market. Shiller’s US annual
data on real stock prices and dividends, 1871-2004, are shown in Figure 15. The necessity of
trimming off some observations before the predictions of the EMH appear supported by these
data may be no surprise. However, the act of trimming the sample in the light of test outcomes
inevitably contaminates the inferences. Our procedures avoid the data-snooping problem by
providing critical values applying to any of the specified subsamples.

Table 6 shows the outcomes of both the traditional residual-based tests from the regression
of prices on dividends, and their counterparts based on the extremum statistics proposed here.
The table shows the values of the statistics and, in parentheses, the upper bounds on p-values
that can be determined from the tabulated critical values. Note that both the ADF and PP tests

5The data are provided by Robert Shiller on his webpage at: http://www.econ.yale.edu/˜shiller/
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Model A Model B

γ C C/T C/S C C/T C/S

Case 1 0.05 0.070 0.064 0.071 0.108 0.187 0.195
No Break 0.1 0.214 0.178 0.191 0.617 0.567 0.751

0.2 0.843 0.749 0.797 0.990 0.998 1
0.5 1 1 1 1 1 1

Case 2 0.05 0.060 0.050 0.058 0.162 0.122 0.135
1 Intercept Break 0.1 0.188 0.121 0.152 0.584 0.380 0.659

α1 = 10 0.2 0.792 0.601 0.707 0.970 0.952 0.990
r1 ∼ U [0, 1] 0.5 0.983 0.953 0.988 1 0.999 0.999

Case 3 0.05 0.049 0.039 0.048 0.101 0.064 0.096
2 Intercept Breaks 0.1 0.085 0.061 0.074 0.190 0.196 0.205

α1 = 10 0.2 0.241 0.200 0.253 0.576 0.602 0.520
r1, r2 ∼ U [0, 1] 0.5 0.510 0.645 0.587 0.752 0.849 0.786

Case 4 0.05 0.148 0.128 0.140 0.339 0.272 0.329
1 Slope Break 0.1 0.454 0.417 0.430 0.873 0.785 0.884

β1 = 1 0.2 0.889 0.861 0.883 0.990 0.992 0.990
r1 ∼ U [0, 1] 0.5 0.992 0.989 0.998 1 1 1

Case 5 0.05 0.043 0.049 0.045 0.103 0.081 0.090
Cointegration 0.1 0.082 0.079 0.088 0.218 0.227 0.305

Break 0.2 0.263 0.223 0.332 0.462 0.419 0.536
r1 ∼ U [0, 1] 0.5 0.48 0.477 0.563 0.556 0.561 0.664

Table 5: Powers of Gregory and Hansen (1996) Tests

fail to reject the null hypothesis of no cointegration at conventional significance levels, whereas
all the tests based on subsamples reject at the 0.025 level or better. This is an example of the
typical situation where the economic theory predicts a cointegrating relation and the traditional
tests do not confirm the theory. Our tabulations can then provide a check on the validity of
censoring the sample; a rejection indicates to the researcher the existence of some relationship
worthy of further investigation.

The properties of the test procedures are illustrated in a different way in Figure 2, which
shows the values of the ADF statistic for each subsample between 1871-1935 (around half the
sample) and 1871-2004. The two broken lines mark the 5% critical values of, respectively, the
usual Dickey-Fuller distribution (1 regressor + intercept) and the QI(0.5) statistic from the
tabulation in Table 1. One thing apparent from this plot, in addition to the gross shift in 1996

Type λ0 ADF Test Phillips-Perron

Standard − −2.81 (< 1) −2.52 (< 1)
QS − −4.46 (< 0.01) −4.41 (< 0.01)
Q∗S − −4.46 (< 0.01) −4.41 (< 0.01)

QI(λ0) 0.5 −4.90 (< 0.01) −4.89 (< 0.01)
0.35 −4.93 (< 0.025) −4.90 (< 0.025)
0.2 −4.93 (< 0.025) −4.90 (< 0.025)

QR(λ0) 0.5 −4.72 (< 0.025) −4.73 (< 0.025)
Q∗R(λ0) 0.5 −4.72 (< 0.025) −4.73 (< 0.025)

Table 6: Real Prices and Dividends 1871-2004: p-value bounds in parentheses
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and subsequently, is the evidence for a smaller but apparently permanent break in the relation
around 1959. These changes are also apparent in the plot of the incremental slope and intercept
coefficients in the cointegrating regressions, shown in Figure 3, together with the two-standard
error bands. (Note that these series are not shown to scale, but are normalized as a proportion
of their terminal values for easy visual comparison.) We conclude that there is strong evidence
from these data of the existence of cointegration subject to breaks. While further investigations
are needed to determine the character of these shifts with confidence, given that the slope and
intercept are highly correlated, these are plausibly breaks in the slope. Without offering any
theories or speculations, we will simply draw attention to the coincidence between the fact that
the first break, at least, does not appear to affect the power of the regular ADF test very severely,
and the evidence on test performance in Case 4 of Tables 3 and 4.

7 Concluding Remarks

Although a wider range of examples and experiments might be required to put the efficacy of
these subsample tests into a clearer perspective, our results suggest that the methods can often
succeed in revealing the existence of relations subject to breaks. We should emphasize again
that, given the extremum tabulations, there is no need to actually compute the full incremental
or rolling procedures in order to perform valid tests. If these critical values are exceeded by any
member of a sequence of subsample tests drawn from the corresponding set from (3.7) or (3.8),
we are entitled to reject the null hypothesis at the corresponding significance level. However, we
also point out that a rejection of the null hypothesis on our test can only be the first step in
the investigation of the relationships. It does not, in particular, provide a consistent estimator
of the break point(s), although a plot of the statistic values as functions of λ1 and/or λ2 would
doubtless provide a very useful informal guide.

We note in conclusion that the tests might in principle be implemented with a range of
alternative qT statistics, such as the modified Dickey-Fuller of Elliott, Rothenberg and Stock
(1996) or the Bartlett-corrected ADF proposed by Johansen (2004). The method might likewise
be adapted to to the fractional ADF as in Dolado, Gonzalo and Mayoral (2002), or Lobato and
Velasco (2006, 2007), although a strategy for supplementary parameter estimation would need
to be considered for these cases. It might even be combined (at some computational cost) with
bootstrap procedures such as Davidson (2002, 2006). Extending the present theory, based on the
asymptotic properties of the statistics in question, appears a reasonably straightforward exercise
for future work, but it appears to us plausible that at least their relative performances with
respect to different alternative hypotheses would be similar to the cases examined here.

A Appendix: Proofs

Proof of Theorem 4.1.
The proof adapts the methods developed by Zivot and Andrews (1992) and Gregory and

Hansen (1996). The first step is to note that according to (4.3), (4.2) and (4.7), the weak limit
of the subsample test statistic can be written as

τ(λ1, λ2) = g(m1(λ1, λ2),m2(λ1, λ2))

where g(·, ·) : Rp2 × Rp2 7→ R is continuous in its arguments, and

m1(λ1, λ2,J) = Vec

∫ λ2

λ1

W ∗dW
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m2(λ1, λ2,B) = Vec

∫ λ2

λ1

W ∗W ∗′dr.

In turn, m1 : [0, 1]2 ×C[0, 1]p
2 7→ Rp2 and m2 : [0, 1]2 ×C[0, 1]p 7→ Rp2are continuous functionals

of their arguments, where continuity is defined with respect to the uniform metric. Specifically
it follows from (4.2)–(4.6) that small shifts in λ1 and λ2, with given J , and also small uniform
changes in J with λ1 and λ2 fixed, both lead to correspondingly small changes in m1; and similarly
for m2 with respect to λ1, λ2 and B.

We next have to consider the various extremum statistics defined by the sets (3.7) and (3.8).
Consider two pairs of points (λa1, λ

a
2) and (λb1, λ

b
2), and denote the corresponding cases by τa and

τb. Since
min{x, y} = 1

2(y − x− |y − x|) + x

is a continuous function of its arguments, we see that

min{τ(0, 1
2), τ(1

2 , 1)} = min
(λ1,λ2)∈Λs

{τ(λ1, λ2)}

is a continuous functional of (B,VecJ), and the same result extends by iteration to

min
(λ1,λ2)∈Λ∗

s

{τ(λ1, λ2)}.

Next, consider the cases Λ0f and Λ0b. Here, one of the two real arguments is held fixed, λ1 in the
first case and λ2 in the second case. The argument of Zivot and Andrews (1992) Lemma A4 can
be invoked here, which says that if (say) τ and τ̃ represent the function evaluated two different
points of C[0, 1]p(1+p), then∣∣∣∣inf

Λ0f

τ(0, λ2)− inf
Λ0f

τ̃(0, λ2)

∣∣∣∣ ≤ sup
Λ0f

|τ(0, λ2)− τ̃(0, λ2)| (A-1)

That is, the difference between the infima of two functions that are uniformly close is correspond-
ingly small. It follows that we may treat infΛ0f

τ(0, λ2) as a continuous functional of (B,VecJ),
with the same result holding for infΛ0b

τ(λ1, 1), and hence extending to infλ∈Λ0f∪Λ0b
τ (λ1, λ2) by

the preceding argument. The cases Λ0r and Λ∗0r, follow in the same manner.
We have therefore established that in the limit the alternative extremum statistics are contin-

uous functionals of (B,VecJ). Applying Assumptions 1 and 2 and the continuous mapping

theorem now completes the proof, if we show that T−1
∑[Tλ2]

t=[Tλ1]+1 utu
′
t
pr→ (λ2 − λ1)Σ and

T−1
∑l(λ1,λ2)

j=1 wlj
∑[Tλ2]

t=[Tλ1]+1+j utu
′
t−j

pr→ (λ2 − λ1)Λ, where these convergences hold uniformly
over the unit upper triangle defined by 0 ≤ λ1 ≤ λ2 ≤ 1. Pointwise convergence follows directly
given Assumption 2 and the stationarity of the increments. Then, noting that the domain of
these functions is compact, the extension to uniform convergence is established by the argument
leading to (A.19) of Gregory and Hansen. (1996), or alternatively by the approach of Davidson
(1994) Theorem 21.9. �

Proof of Theorem 4.2.
By definition of the sets AT , if t ∈ T1AT1 then t ∈ TAT for all T > T1. In other words, the

sequence of intervals {TAT } is monotone non-decreasing. It follows that if [λ1, λ2] ⊆ AT1 then
[Tλ1, Tλ2] ⊆ TAT .for T > T1. Defining t∗ = t−Tλ1 +1 and T ∗ = [T (λ2−λ1)], it follows that the
samples {xt∗ : 1 ≤ t∗ ≤ T ∗} are cointegrated for each T ∗, and increasing in size at the rate O(T ).
It follows that if q∗T denotes a consistent cointegration statistic computed from these samples,
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|q∗T | = Op(T
1/2) by the arguments of Phillips and Ouliaris (1990) inter alia, and the test rejects

with probability tending to 1. However,

q∗T = qT (λ1, λ2) ≥ inf
{λ1,λ2}∈Λ

qT (λ1, λ2) = QΛ.

It follows that the test based on QΛ is consistent. �
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